Risk Minimization Hedging Under Non-optimal Exercising

Dmitriy Levchenkov * Thomas F. Coleman Yuying Li ¥
December 21, 2010

Abstract

Many complex options (for example options embedded in insurance contracts) have an early exercising
feature. It is important to evaluate the impact of the non-optimal exercising in the pricing and risk
management for these options. We consider the problem of discrete hedging under irrational exercising.
We propose a model to explicitly model irrational exercising and compute local risk minimization hedging
strategies under this model. We evaluate quadratic and piecewise linear risk minimization approaches in
this framework and compare hedging performance between different hedging strategies. In addition, we
compare hedging effectiveness under irrational exercising with that of European contracts and American
contracts with optimal exercising. We find that irrational exercising may have a significant impact on
discrete hedging strategies and hedging costs.

1 Introduction

Pricing and risk management of options typically assume that an option holder exercises optimally to max-
imize the gain from the contract. This is often referred to as rational or optimal exercising. While certain
groups of option holders, for example, traders, may come close to the assumption of optimal exercising,
other holders typically exercise the option non-optimally. It turns out that, even for standard American
put and call options traded directly on the S&P 100 index (Fernando Diz (1993)) at Chicago Board Option
Exchange, there is empirical evidence of irrationality, see, e.g., (Poteshman and Serbin, 2001).

Non-optimal exercising can be particularly prevalent for insurance contracts such as variable annuities
with surrender options, given the nature of the contracts. Thus the assumption of rational exercising for
pricing and hedging of these insurance contracts can be more problematic. Indeed, not all contract holders
are expected to use the surrender opportunity optimally, if at all. It is thus important to investigate whether
irrationality of exercising plays a significant role in valuation and hedging of such variable annuities.

The variable annuity (VA) market in the US or segregated funds in Canada experienced a tremendous
growth in the 1990’s due to the demand for retirement savings from the baby boomers and simultaneous
strong performance of the equity market. These VA contracts may include Guaranteed Minimum Death
Benefits (GMDB), received when the owner of the contract dies, and these benefits may be linked to the
performance of a mutual fund or a market index such as S&P 500.

Until the beginning of the 1990’s, the death benefits have been simple principal guarantees (the original
investment is guaranteed in case of death) or rising floor guarantees (the original investment accrued at
a minimally guaranteed interest rate, possibly capped at a predetermined level). In the bullish market
of the 1990’s, insurance companies have started to offer the GMDB with more attractive features, such
as the ratchet, which guarantees a death benefit based upon the highest anniversary account value. This
exposes the annuity writers to potentially large claims during prolonged periods of weak equity market
performance. Regulators and insurance companies are increasingly concerned with potentially large losses.
This has increased the demand for good risk management strategies for variable annuities.
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The traditional actuarial risk management approach adopts a passive strategy of holding a sufficient
reserve in the risk-free asset in order to meet liabilities with a high probability. Option theory has been
applied to price and hedge embedded options in variable annuities, see e.g., Brennan and Schwartz (1976),
Boyle and Schwartz (1977), Aase and Persson (1992), Persson (1993), Bacinello and Ortu (1993). With the
assumption that the market is complete under both financial and mortality risk, the option value is equal
to the expected value of the payoff with respect to a risk-neutral probability measure. Moreover, the option
can be exactly replicated using delta hedging.

Variable annuity contracts that grant a policy holder a surrender option' allow the policy holder to cash
out the contract from the issuing company anytime he chooses. These contracts are essentially complex
embedded options with American-type exercising features. Rational policy holders surrender the option
when the policy value minus the surrender charge is greater than the value of the embedded option. The
surrender option adds additional complexity for pricing and hedging of variable annuity contracts.

Under different assumptions and methodologies, the problem of valuing a surrender option embedded
in life insurance products has been investigated in Albizzati and Geman (1994), Bacinello (2003), Grosen
and Jorgensen (1997, 2000), and Jensen et al. (2001). Mudavanhu and Zhuo (2002) also consider the fair
value of GMDB with the rachet feature and surrender option. In Coleman et al. (2006) and Coleman et al.
(2007b), discrete hedging of embedded European options in variable annuity contracts have been investigated
under different models, including models with jump risk. In addition, it is shown that, under a jump model,
hedging using liquid standard options is more effective compared with dynamic hedging using the underlying.
It is important to note that, in the aforementioned studies, valuation and hedging are considered under the
assumption that the policy holders rationally lapse out the contract.

In order to extend such frameworks to allow policy holders to surrender contracts non-optimally it is
necessary to explicitly model the exercising behavior of the pool of policy holders for a given type of contracts.
An example of such modeling for a different type of problem — refinancing behavior of a mortgage pool — is
presented in Kalotay et al. (2004). Faced with a choice of refinancing or not-refinancing, a mortgage holder
may refinance too early (a Leaper), refinance optimally (a Financial Engineer), or refinance too late (a
Laggard). All people in a mortgage pool are divided into these categories according to refinancing behavior.
The formal definition of Leaper and Laggard are based on a parameterization which is a natural extension
of the definition of the financial engineer. An important feature of such a model is the representation of the
change of the pool’s structure over time. As time goes by and refinancing events occur, holders leave the
pool: first the leapers (if any), then individuals who refinance optimally, and finally the laggards. The most
aggressive mortgagors are the first to refinance, leaving behind the slower reacting laggards. This is referred
to as the prepayment burnout.

In Kalotay et al. (2004), it is assumed that the difference between mortgage rates fully determines
whether refinancing occurs or not. The authors show that the Leaper behavior is not typical in practice and
may result in significant losses for the contract holder from a theoretical point of view. Thus, the authors
concentrate on considering financial engineers and laggards only. Kalotay et al. (2004) also demonstrates
that modeling irrational refinancing changes the value of the contract. For example, the authors observe up
to 1% change in the contract’s value. While not a particularly large deviation, it is already significant and
deserves attention, particularly when the proportion of laggards increases.

Instead of modeling the pool of mortgages directly, Kalotay et al. (2004) represent the proportions of
people for each refinancing behavior category in the pool by a probability distribution which is called the
laggard distribution. If the goal is to obtain the value of a contract, the value corresponding to each refinancing
behavior category can be calculated. The expected value is then computed based on the laggard distribution.
Note that this approach allows for the burnout effect to take place because the laggard distribution is adjusted
as refinancing events occur.

We adapt the approach presented in Kalotay et al. (2004) to the problem of discrete hedging of a pool of
contracts held by individuals with different exercising behaviors. We model exercise behaviors in a pool of
option holders by classifying them into different categories depending on whether they exercise optimally, too
early, or too late. Also, following the same argument as in Kalotay et al. (2004), we exclude Leapers from our
analysis of hedging strategies. As time goes on, the structure of the pool changes and it is necessary to model
the surrender burnout. A family of laggard distributions is introduced that allows convenient modeling of
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the burnout.

Once the exercising behavior of contract holders is described, an appropriate hedging strategy should
be constructed. For frameworks featuring optimal exercising a variety of approaches have been explored.
Under the assumption of continuous trading and market completeness, an American type option can be
delta hedged in a manner similar to the European option. In the discrete hedging context, optimal discrete
hedging strategies for European options have been studied based on risk minimization, see, e.g., Féllmer and
Schweizer (1989)), Schal (1994), Schweizer (1995, 2001), Mercurio and Vorst (1996), Heath et al. (2001a),
Heath et al. (2001b), Bertsimas et al. (2001). Risk minimization discrete hedging of American-type options
has also been considered in Coleman et al. (2007a); however the analysis is conducted under the assumption
that the holder exhibits optimal early exercise behavior. Once again, the option holder is assumed to be
capable of evaluating market conditions perfectly, constantly monitoring market information, and making
an optimal exercise decision based on the current value of the contract.

Using the model proposed in this paper for exercising behavior of policy holders, we extend risk mini-
mization discrete hedging for American-type options to incorporate irrational exercising and investigate its
impact on the corresponding solutions and performance measures. The modeling approach and computa-
tion of hedging strategies can be extended to more complex embedded options, including variable annuity
contracts.

Our presentation is organized as follows. In Section 2 we describe the problem for a pool of holders for
a put option and show how it can be represented as a single contract with a non-deterministic exercising
model. We introduce a laggard distribution model for exercising behavior. Then in Section 3 we describe
quadratic and piecewise linear local risk minimization methods for calculating hedging strategies under the
laggard distribution model. Finally, we analyze hedging performance based on simulations and present and
discuss computational results in Section 4.

2 A Model for Irrational Exercising

2.1 Laggard Distributions

Consider a Bermudan put option on an underlying asset with the expiration date T. Without loss of
generality, we assume that the underlying asset pays no dividend and this option can be exercised at discrete
times 0 = tp < t1 < ... < tpy = T. For simplicity, we also assume that permissible exercising times are
the hedging times as well. Assume that Xy, & = 0,1,..., M, denote the discounted underlying price at
tr, k=0,1,..., M. We assume that the optimal early exercise critical prices are Xz, k =0,..., M (which
can be precomputed in computational implementation). For an American option with exercising permissible
in continuous time, the collection of the optimal exercise critical prices form the early exercise curve (see,
for example, Myneni (1992)).

Suppose that the pool initially consists of P option holders. We classify the holders in the pool according
to a parameterization based on the optimal exercising critical price Xj. Each holder p, p=1,..., P, in the
pool is assigned an irrationality parameter ¢ (which depends on p); the critical exercise price for a holder
with this parameter is (1 — ¢) X;. This irrationality parameter determines whether the person exercises or
not at a given relative difference between the current underlying price and the optimal early exercise critical
price. More precisely, suppose that at hedging time ¢; the discounted underlying price is X and the optimal
exercise critical value is Xj. Unless the option has been exercised earlier, the holder with the parameter ¢
makes a decision to exercise the option at time #j if

2,12k,
Xy —

Under this parameterization, option holders with £ = 0 exercise optimally, £ < 0 corresponds to leapers
and ¢ > 0 to laggards. The value of Zj shows the relative difference between the current underlying price
and the optimal early exercise critical price. If Z; < 0 then X}, is above X} and only leapers may exercise in
this case. If Z becomes zero, the underlying price hits the optimal exercise boundary and rational people
(£ = 0) exercise the option. Subsequently we refer to ¢ as the laggard spread. TFigure 2.1 illustrates the
situation.



We assume that an initial distribution of the exercising types of option holders is given. For example,
consider a pool consisting of 100 rational people (type I), 70 irrational people with £ = 0.1 (type IT), and 30
irrational people (type IIT) with £ = 1. The initial pool distribution is given by the frequency (proportion)
of each type in the pool. For example, since there are 100 Type I individuals in the pool of total 200, the
probability for £ = 0 is 1/2. Clearly, this distribution of types can be equivalently expressed as a distribution
of the laggard spread /.

Analysis of hedging of a pool of the put contracts can be done by considering hedging of a single contract
with the holder randomly selected with an equal probability from the pool. Equivalently we can consider one
single representative contract with non-deterministic exercising with probability of exercising defined from
the laggard distribution.

To see this equivalence, we note that the probability of any exercise event for these two approaches are
equal. Consider the example of the pool distribution given before. When the underlying price first hits
the optimal exercise boundary, a random selected holder in the first approach will exercise with probability
100/200 = l On the other hand, the laggard distribution following the second approach prescribes that the
contract Wlll be exercised with probablhty = as well. Distributions for all quantities determined by exercise
events (e.g., payoffs, incurred hedging costs, etc.) for these two approaches will be the same. Thus hedging
of a pool of put options can be considered equivalently as hedging of a single representative contract in which
the holder has a non-deterministic exercising strategy.

Underlying price path

Optimal exercise boundary

time

>
0
Leapers (l<0) exercise
Rational people (/=0) exercise

Laggards (/>0) exercise

Figure 2.1: Hlustration of exercising behavior of people in the pool. Here ¢ denotes the individual’s irrational
behavior parameter.

However, as time progresses, the structure of the pool of holders changes. This means that the laggard
distribution in terms of the laggard spread changes as well. Typically Zg < 0 initially. As Zy increases
to zero, the financial engineers with a laggard spread [ = 0 will exercise and thus leave the pool. If
7y, further increases, laggards with larger irrationality parameter ¢ < 7, exercise and leave the pool as
well. We assume that there are no leapers?; however, extending the model to allow leapers in the pool is

2 As already noted, leaper behavior is not typical in practice and we limit our analysis to the case £ > 0, thus, allowing only
rational people and laggards into the pool.



Pool of option contracts
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Evolution of the pool
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Figure 2.2: Correspondence between the pool of contracts and the representative contract. Type I individuals
are rational. Type II are irrational with parameter £ = 0.1. Type III are irrational with parameter ¢ = 1.



straightforward. In the event of exercising at hedging moment {; the put option holder receives discounted
payoff Hj, = max(0, Ke i — Xk).

The change of the pool structure for the simple example described previously is depicted in Figure 2.2
First Type I holders exercise. This is followed by departure of the Type II holders. Note that, for each
new distribution of the exercising type of the remaining pool, there is a corresponding distribution of the
laggard spread. Moreover, new distribution at ¢; corresponds to a conditional distribution from the initial
distribution, conditional on excluding holders who have already exercised before #j.

Next we discuss a family of probability distributions that we use to represent laggard distributions.

2.2 A Family of Laggard Distributions

In Kalotay et al. (2004), a discretized exponential distribution is used for specifying the initial state of
the pool of mortgage holders. While discrete distributions might be more convenient for illustrative and
computational purposes, we consider continuous or mixed distributions which can be useful when considering
a large pool of holders. Such distributions may correspond to pools in which individuals have a large variety
of exercise behaviors rather than a few distinct ones. Also, we would like the distribution to be described
by only a few parameters yet be flexible enough. For example, the distribution used in Kalotay et al. (2004)
depends only on one parameter, and, as a result, the proportion of rational people is linked to the behavior
of the tail of the distribution. For our model we would like to be able to specify the proportion of rational
people and proportions for irrational ones separately.
To achieve these goals we consider a family of laggard distributions which are described as follows:

e There is an atom at point 0 with a weight p € [0, 1], specifying the proportion of rational individuals;
e The right tail of the distribution declines exponentially with rate A > 0, describing the laggards.

In other words, a random variable ¥ with such a distribution has the CDF below:

_ _[pt(l=p)(l—e?), £>0
LDo(¢) _P(YSE)_{ 0, 120
The value of LDg(f) represents the proportion of people in the corresponding pool at time 0 with the
laggard spread parameter less than or equal to ¢. Figure 2.3 shows a typical graph of such a CDF.
The mean and variance of the random variable Y are given by the following formulae:

1—p?

EY]= ——, VarlY] = 3

It is interesting to note that this family of distributions include the American option with optimal
exercising as well as European option as special cases: p = 1 corresponds to the optimal exercise (which is
referred to as ‘Bermudan option’ later), because it means that all individuals are rational in the initial pool.
The limiting case of p = 0, A = 0 corresponds to the European option since the pool is comprised of people
who never exercise until the expiry.

In our computational analysis, we focus on values of LDg at 5% and 10% points, i.e., £LDg(0.05) and
LDo(0.1). They could be described as proportions of people with irrationality levels less than 5% and 10%
respectively. Table 2.1 presents the values £Do(0.05) and £Dg(0.1) for some distribution examples. We will
reference this table when discussing the influence of parameters p and A on risk minimization solutions.

2.3 Evolution of the Laggard Distribution

As time evolves, the composition of the option holder pool changes. As financial engineers and less passive
holders leave the pool, slower reacting exercising holders are left in the remaining pool. In the mortgage
backed security (MBS) market, the similar change in the mortgage pool is referred to as the prepayment
burnout, or simply burnout. Similar to Kalotay et al. (2004), this burnout is easily captured in our model
by proper updating of the laggard distribution.
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Figure 2.3: CDF of a typical laggard distribution in the family.

Table 2.1: Properties of laggard distributions: values of £Dg at points 5 and 10% (£Do(0.05) and LDg(0.1)).

p and A are parameters of the laggard distribution.

£D,(0.05) ) LDo(0.1) )
3 ] 5 | 10 3 | 5 | 10
0.8 || 0.83 [ 0.84 | 0.88 0.8 || 0.85 | 0.88 | 0.93
p [ 05 |[057]061] 0.7 p [ 05 [[0.63] 0.7 | 0.82
0.2 |[0.31 [ 0.38 | 0.51 0.2 |[0.41 | 0.51 | 0.71
0 0.14 | 0.22 | 0.39 0 | 0.26 | 0.39 | 0.63




Suppose we are interested in the laggard distribution L:D,? with burnout at the hedging moment 0 <
k < M (The superscript B here emphasizes that the distribution characterizes the burn-out effect). We
know that, at each hedging moment &’ < k, people with the laggard spread parameter ¢ less than or equal
to Zpr = 1 — Xj1 /X have left the pool. Thus, by hedging time k, all people with the exercise behavior

parameter £ < T et maxgieJo,....k—1} 2k’ have departed.
The laggard distribution with burnout can be easily described by specifying a conditional distribution.
If Zi has value Z; then the laggard distribution at moment & will be given by

. L—e =20 0> 5 >0
P Y </ ’ =
LDB() = P(Y <Y > %) = % = 0, €<% (2.1)
(V' > Z) LDo(l), 3 <0,

where random variable Y has the CDF £LDy.

Note that, for 2 > 0, L:D,? is the CDF of an exponential distribution with parameter A shifted right by
the value Zi. In addition, note that L:D,? depends on the evolution of the underlying price only through the
path-dependent parameter Z;. Thus 7y is a path-dependent burn-out variable.

If Z, = 0, it means that all rational people have already exercised and the distribution becomes the
exponential distribution with a parameter A. As the underlying price decreases below the optimal exercise
curve the value of Zj increases and the distribution shifts right, i.e., we observe the burn-out effect.

To evaluate the impact of ignoring burn-out in the model, we consider the model in which the burn-out
effect is not present. While this model may not be valid from the practical point of view, resulting risk
minimization hedging optimization problems are much easier to solve. Thus the no burn-out model might
serve as an attractive approximation to the more complex but realistic burn-out model. For the no burn-out
model the evolution of laggard distribution is simple:

LDNB(6) = LDo() VL.

For a given underlying price path we can determine the critical exercise point for each type of individuals in
the pool, see Figure 2.2.

As mentioned before, we can determine a hedging strategy and analyze hedging performance by consid-
ering a single contract with nondeterministic hedging. Once the laggard distribution is specified, the holder
of the single contract with nondeterministic exercising strategy exercises the option in the following way.

Consider now a single contract with one option holder who, at time k € {0,..., M}, exercises non-
deterministically according to a specified probability distribution (the laggard distribution) with CDF de-
noted as LDy (.). Note that the laggard distribution £Dg(.) is updated as in (2.1) for a model with burn-out.

At the expiry, we assume that holder has the exercising probability of 1. This means that the laggard
distribution £Dp; has a singleton of £ = 0 with probability 1.

At each exercising time k, the value of Z, = 1 — X, /X} is calculated. Given LDy(.), the CDF of the
laggard distribution at time k, £Dj(7;) gives the probability of holder has the critical exercise price of
(1 — Zx) X = Xi. Thus LDy (Z;) gives the probability of holder exercising at time t5, where Xj is the
discounted price at time #;. We can imagine that the option holder, when the discounted underlying price
is X at time f;, flips an asymmetric coin to decide whether to exercise or not. These flips and and the
underlying price evolution are assumed to be independent.

Formally speaking, let {Dy ~ U[0,1], k € {0, ..., M }} be a collection of uniform random variables which
are independent of the underlying price stochastic process { Xy, k € {0, ..., M }}. Then the exercising moment
is given by

M* = min{k’ c {0, ey M} 1D < EDk(zk))} (2.2)

3 Local Risk Minimization Hedging Under Irrational Exercising

Because our model assumes discrete hedging the market is incomplete and the optimal hedging strategy
depends on the choice of the risk measure of the option writer. Local risk minimization is computationally
simple and it has been successfully used for constructing hedging strategies in incomplete markets (see, e.g.,

Follmer and Schweizer (1989), Schil (1994), Schweizer (1995, 2001), Mercurio and Vorst (1996), Heath et al.



(2001a), Heath et al. (2001b), Bertsimas et al. (2001)). The local risk minimization hedging strategy is
determined through backward iterations. Starting from the hedging portfolio matching the liability at the
terminal time, the optimal hedging portfolio and hedging strategy at the preceding time are determined to
minimize the expected quadratic incremental cost. For European options, the terminal time is the expiry of
the option. For an American option, the terminal time is the random optimal stopping time determined by
the rational (optimal) exercising strategy.

We now generalize the local risk minimization to hedging the option irrational exercising, which becomes
more complex since exercising time now depends on the laggard distribution.

Suppose that the discounted underlying asset price is a square integrable process on a probability space
(Q, F, P), with a filtration (Fx)g=o,1,..., s, where F corresponds to the hedging time t; and, w.l.o.g., Fo =
{0, Q} is trivial.

Assume that the holder exercises irrationally with the stochastic exercising strategy determined from the
laggard distribution as described in the previous section. Specifically the probability of exercising at time g
when the underlying price is X} is given by LDy (1 — %)

Assume that the hedging portfolio can be rebalanced at time tgx, & = 0,1,---, M. For simplicity of
discussion, we assume here that the hedging times are the same as permitted exercising times.

For a European option, the stopping moment is always the expiry T, i.e., M* = M. For an American
option with rational exercising M* is the first time underlying price reaches the critical exercise price. For
irrational exercising, the stopping time M* depends on laggard distributions. In contrast to these two types
of options, the main difference for hedging a put with a irrational (stochastic) exercising determined by a
laggard distribution is that the stopping time M™* is now defined by (2.2). The stopping time M* depends
on the path-dependent process {Zk}

Consider a trading strategy represented by two stochastic processes (£x)r=o,... ar+ and (g )r=o,... s+, which
are adapted to the filtration {Fi}, Fr = o(X;|j € {0, ..., k}). Here & is the number of shares held at time
tkH, and 7 is the amount invested in the bond at time tkH. Let &3+ = 0 and nar« = Hpge, which means that
we liquidate our portfolio at the stopping moment to cover the payoff of the option.

The (discounted) value of the portfolio at hedging time ¢, k = 0,1,..., M*, is given by

Vie =& X +m

Let Gy = Zf;g E(Xjp1—X;), k=1,..., M*. Thus Gy is the accumulated gain of the dynamic trading
strategy due to changes of asset prices up to time tkH. At time moment 0, G is set to zero.
The cumulative cost C; is then given by

Co=Vi —Gg, k=0,....,M".

The local risk minimization optimization problems can be solved backwards in time, starting at the expiry
time t3r with £y = 0 and nar = Hyy.

At each hedging time ¢, k = 0,..., M — 1, provided that the contract has not been exercised yet (k <
M), the local risk minimization hedging strategy {&s,ni} can be computed using one of the following risk
minimization formulation, see e.g., Coleman et al. (2007a).

e Quadratic: ming, ,, Ex [(Ck+1 — C'k)2|.7:k];
e Piecewise Linear: ming, ,, Ex; [|Cry1 — Ck||Frl;
e Constrained Piecewise Linear:

min Ex; [|Cr1 — Crl|Fr)

EksNk

s.t. Ex,i [(Cr41 — Cr)|Fi] = 0.

Note that Ex;(-) is expectation with respect to both the underlying price distribution and the laggard
distribution. In addition, different risk minimization formulations lead to different optimal strategies.

The objective function of the risk minimization problem at time #; depends on the incremental risk
Cr+1 — Ck. Assume that the discounted underlying price at time ¢ is X and 2, = 1 — Xk/Xk, where X,



is the critical price at #;. Suppose that the value of path-dependent burn-out parameter Zj is given. Then
Zi41 18 calculated as Zy 41 = max(zy, ;). Given this information, the change in cumulative cost Cj41 — Cy
can take the following values:

o (Xpt1€kt1+mk+1) — (Xg41&k +95), in the case exercise does not happen. In this case, the incremental
risk equals the difference between the new portfolio value and the value of the current portfolio in the
next period;

o i1 — (Xg41&k + mi), when exercise happens. The incremental risk equals the difference between the
payoff and the value of the current portfolio at the end of the period.

The time of exercising under the irrational exercising model is determined from laggard distributions.
Since laggard distributions are defined from the path dependent quantity T o maxgrefo,....k—1} Lk!, COM-

putation becomes more expensive since the hedging strategies now depends on the state value of Zj.

Next we describe more precisely the local risk minimization hedging strategy computation under a bi-
nomial lattice. We assume that the continuous underlying price process S;, t € [0,T], satisfies a stochastic
differential equation,

ds,

t

= pdt + odWy, (3.1)

where W, is a standard Brownian motion.

3.1 Implementation Under a Binomial Lattice

We consider a discretization of the continuous asset price process (3.1) using a binomial lattice with N
periods, see, e.g., Cox et al. (1979). Denote 7 = T/N. Node (i, j) of the binomial lattice corresponds to time
i with the underlying price «* =Sy and the discounted underlying price e "7 u? =1 Xy, fori = 0,..., N, j =
0,...,i, where u = 1/d = eV and Xo = Sp. For each node the (discounted) underlying price goes up with
probability p and down with probability 1 — p where p = eZT__dd.

Nodes of the binomial lattice corresponding to hedging times are referred to as hedging nodes. For
hedging with rebalancing every ng periods, the hedging time (which is assumed to be the same as exercising
time for simplicity) tx = t# = kng7. The total number of hedging periods will be an integer M = N/ng.
A hedging node at ?; is denoted as [k, j], where j denotes the jth possible discounted values at time ¢;. We
use Xj to denote the discounted underlying price at hedging node [k, j] and X} still denotes the discounted
price at hedging time ;. For a given binomial lattice, the probability of reaching each node is uniquely
determined. Starting from hedging node [k, j], probability of arriving at node [k + 1,7 +{], [ = 0,...,ng,

is p = < an >pl(1 —p)"#~! For node [k+ 1,5 + 1], 2541 = ziill =1- ngl/)’(kﬂ. The probability of

exercising is determined by the laggard distribution, which is LDy 11(z541). For distributions with burn-out,
LDj41(z541) is defined in (2.1) in Section 2.3.

3.2 Quadratic Local Risk Minimization

The objective function in the quadratic local risk minimization can be written as

Fx i [(Cryr — Cr)?|Fi] = Fxy [(Ck+1 — Cy)*| Xk = X{, Z = Zk}
nH . . . . . N2 . . . . N2
! ! [ L /a ! ! !
= > . m [(1 — ) (Xiil(fiil(%ﬂ) — &)+ (2 (Ger) — 77‘;1)) + (H;‘iil - XjTg - 77‘;1) ]
=0

where ﬂiill = EDk+1(ziill) and ziill =1- Xliill/j(k+1' For a model with burnout consideration, LDy 41 =
ED,?_I_l. Otherwise, LD 1 = ED,ljﬁ. Note that £D1?+1 depends on the value of 2;41.

The minimization problem for this objective function can be rewritten in a matrix-vector form as
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VPo po(l— ﬂ—i-}—l)lec-}—l po(l— ”i+1)(Xi+1§i+1(5k+l) + ”i+1(5k+1))
1+ i+ 1+ i+ i+ 5 i+ s
4= VPrpr Prg (1 - ”i+?H)Xi+;LH b= Py (1= ”i+?H)(Xi+;LH§i+TH (Zr41) + ”i+?H (Zr41))
V/Po Poﬂ'i_HXi_H PUﬂ'i+1Hljc+1
itn itn itn j+n
L VPrpyg \/anﬂ'k+1HXk+1H ] \/anﬂ'k+1HHk+1H

. ",
== ()

3.3 Piecewise Linear Local Risk Minimization

The objective function in the piecewise linear local risk minimization can be written as

where

Ex,; [|Cr41 — Crl| |Fx] = Ex {|Ck+1 — Ci| | Xk = X,Z, Ty = 51@}

j}’

N
e o i
> o |(1= A [N ET Gra) = 60 + T ) — )|+ w3 | 1T - X{Thed - o]
=0

‘,i-l_l'_ll is defined in the same way as for the quadratic local risk minimization above.

The minimization problem for this objective function can be rewritten in a matrix-vector form as

77j
min ||Az — b||1 r= LI I
reR? %
Po po(l— Wi+1)lec+1 po(l— Wi+1)(lec+1§i+1(ék+l) + ”i+1(2k+1))
+ o o o o A o A
(| e et | e R O I () £ 0l (i)
Po pU”i+1lec+1 pU”i+1Hljc+1
it yitnn JHner pritrrr
Prgr PrpTrgr Xita PrpTryr Hyp

3.4 Constrained Piecewise Linear Local Risk Minimization

For the constrained piecewise linear local risk minimization problem, the constraint can be rewritten as:

Ex,; [Cry1 — Cx |Fi] = Exy {Ck+1 —Cy | X = X,Z, Zy = 51@}
nm

- o : o : - - L :
S ow [(0= ) (K Grrn) — &) + 0l G — n)) + =l (B - XIEiel - )]
=0

nH
> o [0 w3 (XERE Gern) + i Gea) ) + m S - X ] - ol
=0

0

Substituting the expression for 77‘2 into the objective function results in a one-dimensional L problem for fi

For the model with burn-out, i.e., L:D,? is used, optimization problems must be solved for each possible
value of Z;. Thus, for a continuous laggard distribution, discretization is necessary. The discretization for the
laggard distribution used in subsequent computational results is described in Appendix A. The optimization
problem is solved for all (), i = —1,...,m — 1, which is the discretization for %;. For holdings at other
values of Z;, we use a linear interpolation as follows:
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o if z; < 0 choose the holdings that corresponds to z(=1) (the underlying price path has never crossed
the optimal exercise curve);

o if 201 < 2 < 20 for some i € {1,...,m— 1}, choose a weighted average of holdings that correspond

to 20-1 and (), with weights g(f)(:);(’ffl) and g’é(f):Z;E:_lf), respectively;
o if 2, > 2"~V choose the holding that corresponds to ("™~1),

Note that higher order interpolation can also be used.

Hedging strategy computation and analysis is more complicated for a model with burn-out than the
model without burn-out. For a model without burn-out, the optimization is carried out only for the initial
laggard distribution ED,SIB = LDy, which dramatically simplifies the optimization step. In the case of the
model with burn-out, the laggard distribution has to be updated along each stock price path and Z; needs
to be determined for each value of the burn-out variable z.

Compared to the rational exercising case, hedging computation and analysis under the laggard distribu-
tion for irrational exercising is much more complex. In particular, calculations have to be carried out for all
nodes [(k, j)], because exercise does not necessarily occur below the optimal exercise boundary.

4 Computational Results

We now compare performance of different local risk minimization strategies for hedging American put options
under irrational exercising. In addition, we compare hedging performance under irrational exercising with
hedging performance for an American option under rational exercising as well as for a European option.

We compute expected hedging costs based on simulation, similar to the investigation in Coleman et al.
(2007a) for American options with rational exercising. We generate 100,000 independent underlying price
paths for (3.1). At each hedging time along each path we determine if the underlying price is below the
optimal exercise value (or critical value); whether the early exercise occurs or not is determined by the
current laggard distribution. If no exercise occurs, we update the value of the burn-out variable Zk, update
the portfolio to values corresponding to the new 7y, and proceed to the next hedging time. In the event of
exercising, the payoff’s value is added to the cumulative cost.

Using simulation we obtain a distribution of the cumulative cost at the moment of exercise Cps+. In
particular, we compute the average cumulative cost, which is an approximation to the expected value E[C'y+].
First we consider the model without the burn-out effect, i.e., ED,SIB is used, and compare it to the rational
exercise and European cases. Then we consider the model with the burn-out effect, i.e., L:D,? is used. We
compare hedging performance for these two laggard distribution models. We focus on the average cumulative
cost as the performance measure, since it is often considered a proxy for the value of the option.

4.1 Results for the Model Without the Burn-out Effect

We solve optimization problems arising from the piecewise linear (L), quadratic (Lz), and piecewise linear
constrained (Lie) local risk minimization formulations to determine the corresponding dynamic hedging
strategies. We examine hedging performance characteristics via simulations for the underlying price and
laggard distributions with various values of parameters p and A. We assume the strike price for the put is
fixed at K = 100 and ng = ng = 50. The results are summarized in Table 4.1.

Firstly, we observe that, when the weight parameter p of a single atom at { = 0 in the initial laggard
distribution is p = 0.8, the results roughly coincide with the results for the Bermudan option with rational
exercising regardless of tail declining rate parameter A. Indeed, from Table 2.1, we see that at least 83% of
the people in the pool exercise if the discounted underlying price falls below the optimal exercise value by
5%. Even if around 20% of the people are not rational, the difference in average cumulative costs between
our irrational exercising model with a laggard distribution and the case of rational exercising still seems to
be insignificant.

However, if p falls down to 0.5, we observe a significant deviation {rom the rational case - around 4% for
L1, and 2% for Ly and Lic. However, the influence of A is again minimal.
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Table 4.1: Results for the Non-Burn-out Laggard Model: Average Cumulative Costs for Ly, Lo, and Lic
local risk minimization methods for different values of p and A. K = 100,ng = ng = 50.

AvgCumCost
p
0 [ 020508
il gég L1 | 350 | 3.73 [ 3.91 [ 4.00
2 .
323 3| Ly [AT4[435 [452 [ 460 | [Rational Bermudan |
1 : \ Lic | 3.97 | 4.18 | 4.35 | 4.43 = 03
L1 | 3.61 | 3.78 | 3.92 | 4.00 Ll 4‘63
5 Ly | 4.26 | 4.41 | 4.53 | 4.60 L2 4'45
Lic | 4.09 | 4.23 ] 4.36 | 4.43 1€ :

Table 4.2: Using different irrationality indicators for explaining Average Cumulative Cost for Non-Burn-out
Laggard Model: R? for L, and L, local risk minimization methods. K = 110, ng = ng = 50.

| R? | LDo(0%) | LDy (5%) | LDo(10%) | expected value |

Ly 0.94 0.97 0.97 0.83
L, 0.88 0.92 0.93 0.8

If p = 0.2, the results are in between the European and the rational exercising cases. This is expected
since only around 30% and 40% of the people (for A = 3 and 5, respectively) exercise if the underlying price
falls below the optimal exercise value by 5%. Note that A now plays much bigger role since p is smaller -
average cumulative costs differ by more than 1% for A = 3 and 5.

For p = 0, the numbers move closer to the European case. However, since the European case is a limiting
case with A — 0, the numbers are still significantly different from the European case for A = 3 or A = 5.

As discussed in Section 2.2, we can consider several properties of the laggard distribution, for example, the
expectation and values for LDo(0%), LDo(5%), and LDo(10%). We investigate which ones, if any, can serve
as indicators of overall irrationality in the corresponding pool for explaining the cumulative hedging cost,
even if the exact shape of the laggard distribution is not known. We investigate this using linear interpolation
as follows. For values of p = 0,0.2,0.5,0.8 and A = 3,5, we compute the expectation, LDo(0%), LDo(5%),
LDo(10%), and corresponding average cumulative costs for Ly and L; methods. We then apply ordinary
least squares to explain the average cumulative cost by each of the indicators. We are interested in the
in-sample goodness-of-fit R? for each of the runs.

The regression results are summarized in Table 4.2. From this table, we can see that all £LDq(0%),
LDo(5%), and LDo(10%) explain average cumulative costs well for both methods, with Ly being explained
better. However, the expectation explains the average cumulative cost the least. This suggests that the
information about the proportion of people with irrationality parameter ¢ less than 5% or 10% is more
valuable than the expectation of the laggard distribution. In addition, while £LD¢(0%), the proportion of
rational people, explains the cumulative cost quite well, LDo(5%) and £LDo(10%) provide better explanation.
This shows that the tail-behavior of the laggard distribution does have a significant impact on the properties
of the hedging cost.

4.2 Results for the Model with the Burn-out Effect

We now examine hedging performance under the irrational exercising with the burn-out effect. If we assume
that the laggard distribution changes over time as described in Section 2.3 and run simulations of the
underlying price, we can observe a change in the proportions of each type of laggards over time. Figure 4.1
shows the effect for the model with the following parameters: K = 100,ng = ng = 50,p = 0.5, A = 5. We
observe that the proportion of people with irrationality parameter ¢ below 5% declines by approximately
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4% by the end of time horizon [0, T]. While this number may look small, recall that costs associated with
exercising are significant. Even such small numbers are likely to impact the solution and its properties.

1

0995}
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g 45 0.985}
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a) b)

Figure 4.1: Illustration of the burn-out effect for put options with the strike K’ = 100 and K = 110. The
graph depicts the decline in the ratio LDP (x)/LDo(x) for x = 5%, 10%, 15%, and 20% as hedging time k
increases. (ng = ng = 50,p= 0.5, A =5)

Figure 4.1 illustrates that, as the number of exercise opportunities increases, the influence of irrational
exercising on the solution becomes larger. The probability of the underlying price path diving below the
optimal exercise value is higher for a larger strike K; this is reflected in Figure 4.1 b). We observe a more
significant change of the pool’s structure for K = 110 ( plot b) ) than for K = 100 ( plot a) ) and expect
more pronounced effects of irrational exercising in the first case. In addition, since we consider the model
for which hedging and exercise moments coincide, i.e., ng = ng, we can expect the effect to depend on
hedging frequency and be stronger for more frequent hedging (or small ng). Thus, we run experiments for
ng = 25,50, and 100.

We first examine whether hedging under a burn-out model is significantly different from hedging under
the non-burn-out model. To answer this question, we compare hedging performance under a model with
burn-out with the hedging performance under a model without burn-out.

From Table 4.3, we observe that differences between the non-burn-out model and the model with burn-
out (panels T and ITT in the table) are about 12% for L; method and 4-7% for L, and Ljc. The difference
tends to grow for Ly and Ljic as the hedging (and, thus, the number of exercise opportunities) becomes
more frequent, which is consistent with our claim that more early exercise opportunities will underscore the
difference between the models. However, the behavior with respect to ng is inconclusive for Ly method -
the difference does not seem to drop down as the hedging becomes less frequent; we will discuss this issue
later.

Since calculating hedging strategies for a model with burn-out is much more computationally intensive
than calculating strategies under the non-burn-out model, we further investigate what reduction in per-
formance we can expect if we use the non-burn-out strategy in the model with burn-out. To achieve this
objective, we compute hedging strategies under a non-burn-out model and evaluate hedging performance un-
der the burn-out model using simulations. We then compare its hedging performance with the performance
from the strategy computed under the burn-out model, see Il and III in Table 4.3.

From Table 4.3 we can see that the results for Ly and L;c follow the same pattern as in ‘I vs I1I’, however,
the differences are smaller and range between 1% and 3%. Again, the differences for L, are significant (8-9%)
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Table 4.3: Comparisons between Burn-out and Non-Burn-out Laggard Models: Average Cumulative Costs
for Ly, L, and Lyc local risk minimization methods for different values of ng(=ng). p = 0.5, A = 5.

Average Cumulative Costs ( K = 110 )
0. Rational Bermudan 1. Non-burnout model
nH(: nE) nH(: nE)
25 | 50 | 100 25 | 50 | 100
Ly | 10.65 | 10.60 | 10.48 Ly | 10.53 | 10.37 | 10.00
Ly | 10.59 | 10.45 | 10.10 Lo | 1046 | 10.22 | 9.75
Lic | 10.48 | 10.35 10 Lic | 10.35 | 10.12 | 9.66

I1. Non-burnout Strategy
for Burn-out model

nH(: nE)

II1. Burn-out model
nH(: nE)
25 [ 50 [ 100 = 25 | 501 | ”ﬁ
Ly [ 10.10 [ 10.04 [ 9.78 L | 976 | 9.61 ] 9.
Ly | 975 | 9.63 | 9.36
Iy | 10.00 | 9.84 | 9.49 7 555 T0.50 057
Lic| 988 | 9.74 | 9.41 e |7 : :

Table 4.4: Comparisons between Burn-out and Non-Burn-out Laggard Models: Average Cumulative Costs
for Ly, L, and Lyc local risk minimization methods for different values of ng(=ng). p = 0.5, A = 5.

Average Cumulative Costs ( K = 100 )

0. Rational Bermudan 1. Non-burnout model
ny(=np) ni (= ng)
25 | 50 | 100 25 | 50 | 100
Ly | 453 | 4.03 | 3.70 Ly | 4.46 | 3.92 | 3.56
Ly | 4.72 | 4.63 | 4.46 Ly | 4.66 | 4.53 | 4.30
Lic | 4.57 | 4.45 | 4.26 Lic | 4.50 | 4.36 | 4.12

I1. Non-burnout Strategy
for Burn-out model
nH(: nE)

25 | 50 | 100

L1 | 4.35 | 3.83 | 3.50

Lo | 453 | 443 | 4.23

Lic | 4.38 | 4.26 | 4.06

III. Burn-out model
nH(: nE)

25 | 50 | 100

Ly | 420 | 3.72 | 3.45

Ly | 441 | 4.34 | 4.18

Lic | 4.26 | 4.16 | 4.02
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for all values of ng. These results suggest that, for given parameters, if one is using Ly or Lic and can
tolerate the performance reduction in the average cumulative cost of 3%, it is possible to use the non-burn-out
model for producing the hedging strategy even if it is known that the burn-out takes place. However, if Ly
risk measure is used, this approach may not be justified as the difference can be quite siginificant.

Table 4.4 shows that, for K = 100, performance comparison follows the same pattern as for K = 110,
but with smaller differences between the models.

It is interesting to understand why L; risk measure produces such different results from the quadratic
risk measure Ly . Thus we compare portfolio holdings & for Ly and Lg risk measures. For K = 110, ng =
ng = b0, we consider hedging time k& = 6 out of a total M = 12, i.e., the midlife of an option which expires
in one year and is hedged monthly. For all binomial nodes corresponding to this hedging time, we graph in
Figure 4.2 the holding & obtained by Ly and L, risk minimization methods for:

e The European option;
e The rational Bermudan option;

e The model with burn-out assuming that the value of 2, < 0 at the node of interest (underlying price
path has been above the optimal exercise boundary);

e The model with burn-out assuming that the value of Z; = 0 at the node of interest (all rational
individuals have already exercised);

e The model with burn-out assuming that the value of Z; = 15% at the node of interest (individuals
with £ < 0.15 have already exercised).

From the bottom plot in Figure 4.2, we observe that, for L, risk minimization, as the value of Z; grows,
the holding gradually shifts to the holding for the European put. It is interesting to note that, for small
underlying prices, stock holdings still differ significantly from the European ones, even falling under —1 for
very small underlying price. This is because that, in the L local risk minimization, the underlying holding
is determined to best match both future portfolio value in case no early exercise happens and large payoff
values in case of the early exercise. Since Lg-norm is sensitive to the large cost, the resulting stock holding
becomes different from those for European put and Bermudan put with rational exercising.

In contrast, Ly risk minimization under a burn-out model yields holdings close to the European case for
most values of Z;. It is somewhat expected because L measure does not penalize large costs as much as L,
measure does. It is thus more likely to take into account what happens in the case when early exercise does
not occur, rather than to large payoffs happening with small probabilities. Note the non-smoothness of the
holding, which is typical for solutions of L; optimization problems.

Proximity of Ly solutions to the solutions in the European case suggests that the method will produce
lower average cumulative costs for a model which is closer to the European case. In our framework this
happens when either burn-out is present in the model or the number of early exercise opportunities is low.
This observation explains behavior of Ly method with respect to ng in Table 4.3.

5 Conclusions

In this paper we consider a discrete hedging model for American options under irrational exercising. A
family of probability distributions has been proposed to model irrationality, with irrationality of each option
holder represented by a laggard spread. This probability distribution is referred as the laggard distributions.
Parameters of the family of laggard distributions can be estimated from historical data by tracking the
proportion of people surrendering the option after the underlying price dips below the optimal exercise
boundary.

We consider two variants of irrational exercising models. In the simpler non-burn-out model, the distri-
bution does not change over time. The more complex model accounts for the burn-out effect, i.e., the change
of the pool of option holder composition over time. While the model can be regarded as a blend of the
European and rational exercise cases, it has its own special properties and presents unique computational
challenges.
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Figure 4.2: Portfolio holdings for binomial nodes correspoding to hedging time k& = 6 for various models and
methods. K = 110,ng = ng = 50. p = 0.5, A = 5 for the burn-out model.
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Under a model with burn-out effect, computation of hedging strategies and analysis are significantly more
intensive. OQur computational results suggest that the proportion of people who exercise rationally plays a
significant role. If this proportion is high enough, the hedging solution under irrational exercising resembles
the hedging solution for the Bermuda option under optimal exercising. However, when the proportion of
the rational exercising option holders is smaller, the tail of the laggard distribution impacts the properties
of the hedging strategy and its hedging performance.

In addition, we have shown that average cumulative costs for the optimal hedging strategies can poten-
tially be explained using properties of the laggard distribution such as CDF values at 5% or 10%, which is
much better than the expected value of the laggard distribution. With respect to differences between differ-
ent risk minimization formulations, piecewise linear Ly local risk minimization seems to be more sensitive
to the presence of the burn-out effect, with up to 12% difference in the average cumulative costs. However,
relative performance comparison between Lq, Lo, and Lic risk minimizations is similar to the case for the
European and Bermuda option under rational exercising, with Ly risk minimization producing lower average
cumulative costs than Ly and Ljc.

Our results and analysis suggest explicit modeling of irrational exercise in risk minimization may be
important. We provide different risk minimization formulations, analyze hedging performance characteristics,
and compare their hedging performance. This study can be applied to risk management of standard American
options as well as surrender option features embedded in various complex insurance contracts.
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A Discretization of the Initial Laggard Distribution

The family of laggard distributions that we consider has an atom at 0 and a continuous right tail. As the
underlying price decreases below the optimal exercise curve, the value of 7, tises. If we set up a local risk
minimization problem at hedging moment £, Z;, will have to be a parameter in that problem. With Zj
being continuous, its range has to be discretized for the solution to be obtained numerically. Since Zy is
used to determine the evolution of the laggard distribution, a reasonable approximation can be achieved by
discretizing the initial laggard distribution. This way we can obtain discrete values for Zj, corresponding to
different levels of exercise behavior parameter for people in the pool.

o CDF of aLaggard Distouton | Cut-off values for
Lt the discretized distribution

08y 1 i —-11] 0 1 2 3

o7r z0) —e | 0 | 0.058 | 0.139 | 0.277

06 CDF 0 |0.2 0.4 0.6 0.8
£ osf

0.3

0.2

0.1r

—%.l [') O‘.l O.‘Z 013 0.4

Figure A.1: Discretization of the laggard distribution. p = 0.2, A = 5. € stands for the machine epsilon.

We divide the probability range [p, 1] into m equal-sized intervals and applying inverse CDF to them to
get points on the z-axis. The procedure is illustrated on Figure A.1 for m = 4,p = 0.2, A = 5. For our
distribution family cut-off points should be defined as () = —In(1 —i/m)/\, i=0,..,m— 1, to satisfy the
definition. Since the CDF is discontinuous at point 0, it is convenient to define one more point, (=1 = —e¢,
where € is the machine epsilon.

The bigger the number of cut-off points m is, the better the approximation is. However, as we will see
later, this comes at steep computational costs. We typically use m = 10 in our experiments.
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